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The effect of Coriolis force on the onset of thermal convection in a shallow layer 
of viscous liquid is studied in the limit of rapid rotation of the layer. Existing 
results which apply when the fluid lies between free boundaries are extended to 
the case where the boundaries are rigid. 

~~ _ _ _ _ _ _ ~  

1. Introduction 
Benard (1900) observed that if a thin horizontal layer of liquid were heated 

from below then, at a critical temperature gradient across the layer, the initially 
stagnant layer would break up into cellular patterns of convective motion. 
The determination of the value of the temperature gradient a t  the onset of such 
motion is a problem which has been treated by various authors; an exhaustive 
treatment is given, for example, by Pellew & Southwell (1940). Their analysis is 
valid within the Boussinesq approximation to the Navier-Stokes equations, 
where the effect of density variations are neglected everywhere except when 
they appear in conjunction with the gravitational acceleration. Many further 
results are given by Chandrasekhar (1961) for this and related problems. The 
stability of the equilibrium configuration of the stagnant layer is determined by 
the Rayleigh number R = ga/?d4/~v,  which can be thought of as the ratio of 
buoyant gravity forces (which tend to cause the instability) to  frictional viscous 
forces (which tend to retard the instability). Here we have used the notation: g 
is the gravitational acceleration, 01 is the coefficient of volume expansion, /? is 
the temperature gradient across the layer and d is the depth of the layer. The 
constants K,  v are the coefficients of thermal conductivity and kinematic viscosity, 
respectively. For R < R,, the system is said to  be stable to disturbances of 
infinitesimal amplitude, and for R > R, the linear theory of instability predicts 
that convective motions may ensue. 

Of particular interest to those interested in geophysical applications has been 
the closely related problem where the heated layer is under the influence of 
Coriolis force in addition to gravity. If the layer is rotating with respect to an 
inertial frame of reference, the critical Rayleigh number, R,, at which convective 
motions are first allowed will be a function of the Taylor number, or magnitude 
of Coriolis forces. The Taylor number, T E 4QZd4/v2 (where f2 is the rate of 

* Now at Department of Applied Physics, Harvard University, Cambridge, Maasa- 
chusetts. 

48 Fluid Mech. 22 



754 P. P. Niiler and F. E.  Bisshopp 

rotation), is essentially the square of the ratio of Coriolis force to viscous frictional 
force. Numerical calculations for R, = R,(T), for T < los, have been carried out 
by Chandrasekhar (1961) for various boundary conditions at the plane surfaces 
bounding the liquid layer. However, the nature of the instability at large T 
when the boundaries are rigid has not been fully dealt with in the literature. 
It is our purpose in this note to investigate the effect of rigid boundaries on the 
onset of thermal convection in the asymptotic limit of large Taylor number. 
We point out that calculations for R, when T < lo8 have been done by the 
Rayleigh-Ritz method, which is essentially limited to  finite values of T, while 
our solution is an asymptotic expansion in T and is valid for T > lo1'. 

The thermal instability problem for the rotating layer can be formulated in 
terms of linear, ordinary differential equations with constant coefficients. The 
exact solution of these equations can be written in terms of exponential functions, 
from which one obtains the asymptotic expansion of the solution. The two 
principal, and exact, results of this analysis are that in the limit of large Taylor 
number the viscous effects which are introduced at the boundary play a signifi- 
cant role only in an exponentially thin layer near the boundary, and hence the 
critical Rayleigh number is independent of whether the boundaries are rigid or 
free; and that in the major part of the fluid the gradient of the perturbations is 
constrained by rapid rotation to lie essentially in the direction normal to the axis 
of rotation. 

2. Equations of the problem 
For the present purpose, we shall refer to Chandrasekhar's formulation of the 

equations governing marginal stability of a rotating horizontal liquid layer 
which is heated from below. We shall assume that exchange of stabilities holds, 
though it has in fact been shown correct for sufficiently large Prandtl numbers 
only when the boundaries are free surfaces. 

I n  terms of the dimensionless variables 

W ( Z )  = Wyz) /aa ,  E ( Z )  = y y ( ~ ) / 2 ~ 2 a 2 ,  x = z'/a, a = aid, (2.1) 

which represent vertical components of velocity and vorticity, height and wave- 
number of the perturbation of the steady state respectively, we can write the 
governing equations as 

(2.2) 

[ D 2 - ~ ' ] E + D ~  = 0, (2.3) 

where D iswritten for d/dz. The temperature perturbation has not been neglected, 
simply eliminated at this stage of the formulation. The boundary conditions to 
be specified at x = 0 , l  for a free boundary are that the normal component of 
velocity, the viscous stress and the temperature perturbation vanish, that is, 

[D2 - a2I3 w + TD'w = - RU'W, 

w = 0, D2w = 0, D t  = 0, D4w = 0. (2.4) 

For a rigid boundary they are that the velocity and temperature perturbation 
should vanish, i.e. 

w = 0, Dw = 0, 5 = 0;  (D2-az)2w-TD[ = 0. (2.6) 



Influence of Coriolis force on  onset of convection 755 

The eigenvalue problem defined above will yield a characteristic equation for 
the Rayleigh number R = R(T, a) ,  and we want to determine the minimum value 
of R, for fixed T ,  when T is very large. Since the equations for w(x), E(z)  are 
linear with constant coefficients, we can obtain the exact eigenfunction in 
terms of exponential functions of a complex argument, and, by substitution into 
the boundary conditions, the exact Characteristic equation. For this reason 
we shall proceed to develop the asymptotic expansion of the characteristic 
equation first, and then apply the result of this expansion to the exact eigen- 
functions to determine their asymptotic form. We point out that an alternate 
method of solution of the problem follows by construction of the asymptotic 
forms of the perturbation equations, the solutions of which should be the 
asymptotic eigenfunctions. To determine the asymptotic characteristic equation 
these solutions are substituted into the boundary conditions, which have to be 
satisfied to at least the same degree of approximation as the asymptotic differ- 
ential equations. Because it is difficult to prove that such a scheme will indeed 
lead to the asymptotic expansion of the exact solution of the complete problem, 
we shall begin with what we know is the exact solution and compute its asymptotic 
expansion directly. 

3. Representation of the solution 
It is convenient t o  deal separately with the odd and even solutions of (2.2) 

and (2.3). Since the odd mode can be shown to be more stable (cf. Chandrasekhar 
1961), we consider the even mode, which will be written in terms of the variable 

The boundary conditions are now applied at 2 = & t. The solution for w(^z), 
even in 5, is the real part of the complex representation 

5 = 2-4. (3.1) 

3 

The complex numbers p, are the roots of the equation 

where the three roots of (3.3) are those which have the real part positive; A ,  
are complex-valued constants. The solution for E ( x )  follows from (2.3) 

(,8t+az)*+,8$T = a2R (i = 1,2,3), (3.3) 

3 

.I= 1 
k(2) = AOsinha2/cosh(&x)- A,p,sinP,5/(a2+P4)cos(3p,). (3.4) 

The expressions (3.2) and (3.4) are to be substituted into (2.4) or (2.5), which, 
together with (3.3), will yield the exact form of the characteristic equation 
R = R(u, T). 

4. Free boundaries 
In the case of free boundaries we take the result given by Chandrasekhar 

(1961); he finds that the critical Rayleigh number is proportional to Tf and the 
corresponding wave-number of the most unstable disturbance is proportional to 
T*. His solution is R, N P,T# and a, N acT*, (4.1) 

48-2 
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where 

and 

as T --f 00. The eigenfunction can be obtained from equation (3.2); it follows easily 
that 

The interesting feature of this case is that the asymptotic eigenfunction happens 
to be identical with the solution of the asymptotic differential equation, 

w(z) N sinnz. (4.4) 

(P--aR+a2P)w N 0, (4.5) 
for all values of z in [0,1]. Consequently the solution of the asymptotic differential 
equation satisfies all the boundary conditions even though that equation is of 
lower order than the system defined by equations (2.2) and (2.3). In  other words 
the free-boundary conditions give a solution in which, by accident, there is no 
boundary layer in the solution for w. 

Now the asymptotic expansion of w(z) indicates that the first-order term for 
the free boundaries is obtained by neglecting terms of O( T a )  uniformly through- 
out the layer. In  this case, the gradient of w makes an angle of O(T-*) with the 
direction normal to the axis of rotation throughout the fluid region except in 
layers of O ( T 4 )  adjacent to the boundaries. In  such regions, however, w is 
O(T-*) and we have neglected such terms in our expansion. Hence, in regions 
where w is of significant magnitude, its gradient will be essentially in the direction 
normal to the axis of rotation. As will be shown in the next section, this will not 
be the case when the boundaries are rigid. In  that case we will have to retain 
terms of o(T-2~) for the first-order solution while terms of O(T-*) are neglected 
uniformly throughout the layer. In  addition to a flow in the central part of the 
layer, there will be boundary layers of 0(21-*) adjacent to rigid walls, where w 
isof O(T-A). Inthemajor portionofthelayerthegradient ofwwill againmakean 
angle of O(T-*) with the horizontal. In  the boundary layer, however, it will 
make an angle of O(T-A) with the direction of the axis of rotation, and hence will 
be more nearly in the direction of rotation. 

At this point we shall not examine the cell structure in greater detail (cf. Veronis 
1969); instead we shall proceed with the analysis for the case of rigid boundaries. 

5. Rigid boundaries 

tions (3.2) and (3.4) are substituted into (2.6). We introduce the notation 

and the characteristic equation can then be written as 

To obtain the characteristic equation in the case of rigid boundaries, the solu- 

yi = /%tan(48,) (i = 1,2,3), (6.1) 

Here Im denotes the imaginary part, the bar denotes the complex conjugate, and 

The details of the derivation of this expression and subsequent simplifications 
are found in appendix 1. 

y = (aR/T) tanh (Qa). (5.3) 
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In the limit T -+ co, we again expect that a --f Ti ,  and R + PT3. The roots of 
(3 .3)  can now be obtained by directly solving the cubic equation 

84 = C C ~ P - ~ + O ( T - # ) ,  /Y2 = , /iT*[l+O(T-*)], (5.4) 

The following asymptotic relations will also be useful: 

tanh (+a) = 1 -I- O{exp ( - Ti)} ,  tanh (+p2) = i + O{exp ( - TA)). (5.5) 

The asymptotic expansion of expression (5 .2)  can now be obtained with the help 
of (5.3)-( 5.5) 

/31tan(&Pl) = 42o?Th+0(1), (5.6) 

where we have retained the highest-order terms and used the definition (5.1). 
The smallest root of (5.6) is 

= ~ ( 1 -  , / 2 / a 2 T h )  + O(T-4). (5-7) 

The expression for P,  and hence the characteristic equation for R, i.e. 
P = R/T),  is obtained from (3 .3) ,  for i = 1, in the limit T -+ 00, 

a2P = a6 + n2 - 2n2 ,/2/a2Ti% + O( T-*) . (5.8) 

It is worth pointing out that the result (5.8) to 0(1)  is identical to that of the 
free boundaries. However, to O(!Z'-h), (5.3) predicts a lower value for R, than 
is obtained for the case of free boundaries. 

The eigenfunction for the rigid boundaries can now be calculated from (3 .2)  
and (3 .4) .  In  terms of the boundary-layer co-ordinate 

z" = ,/2T4(4- la\), 
w(2) can be written as 

w(5) = A(co~,8,5-ne-~cos (Z- Bn)/a2T*s}+ O(T-i), (5.10) 

where A is an arbitrary constant. 
For any 5 bounded away from the boundaries, the eigenfunction (5.10) is, to 

O(l), identical with that of the free boundary solution of $4. However, for 5 
approaching the boundary, i.e. T --f co with x" fixed, there exists a boundary-layer 
flow which has a vertical component 

w(Z)  $Ti% 
4 2  N A{ 1 - e-*(cos z" + sinz")}. 

n 
(5.11) 

Thus it is now apparent that in general we may expect two distinct limits of 
(5.6). The motion is dominated by constraints imposed by rapid rotation in the 
interior of the cell, and in addition there are boundary layers adjacent to the 
rigid walls where the asymptotic expansion of (2 .2)  is 

($+4-$) w(2) = O(T-*). (5.12) 

Since the fluid particles move in tightly wound spirals in the interior of the 
fluid layer, and they must have zero velocity at the boundaries, (5.11) represents 
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an Ekman boundary layer. We note that for T -f CQ the motions which are 
induced by the thermal instability a t  the onset of steady convection are small 
motions departing from rigid body rotation, and that similar boundary-layer 
problems have been discussed by Proudman (1956), Stewartson (1957) and Robin- 
son (1959). 

Calculations for the characteristic equation R = R(a, T) which yield a numeri- 
cally converging critical Rayleigh number R, for T < 108 have been carried 
out by Chandrasekhar (1961). From these calculations Chandrasekhar infers 
that as T -+ 00 the value of P, should depend upon boundary conditions. Accord- 
ing to the asymptotic expansion of the exact solution, however, P, is independent 
of the boundary conditions to O( 1). For T N lo8, one would expect a difference of 

pc, PC, 
variational asymptotic 

T methods method 

ol) - 8.69 
101% - 7.80 
10'0 7.51 7.27 
10s 7.09 6.63 
106 7.11 5.62 

TABLE 1. Comparison of values of P, computed by variational methods with the values 
computed by asymptotic expansion of the exact solution for a rotating plane layer heated 
from below with rigid boundaries (Pc G R,/T%). 

the order of 10 yo between P, for rigid and free boundaries and this is sufficient 
to  account for the difference observed in numerical calculations. To O(T*), 
only an exponentially thin layer close to  the wall differentiates the solutions 
for a free boundary from those for a rigid boundary. Hence, from physical 
considerations alone, we would expect that,to O( l), P, would be independent of 
viscous boundary conditions, which is, of course, verified by the above limit 
analysis. The value of P, to O( 1) is determined by the stipulation that the total 
mass of the system be conserved. Viscous effects introduced at the boundaries 
play a significant role only in determining the form of the asymptotic motion 
near the boundary. Equation (5.8) predicts the right trend for the critical 
Rayleigh number for the case of rigid boundaries for T ;2 lo1%. Table 1 is a numeri- 
cal comparison of (5.8) with results quoted by Chandrasekhar, and for T N 1O1O 
the agreement is still remarkably good. 

6. Concluding remarks 
Perhaps the most significant result of this analysisis the observation that, in the 

limit of large Taylor number, the Rayleigh number (or the force needed to move 
the fluid parallel to rotation) is independent of the surfaces which bound the 
fluid. It was found that the effect of boundaries is constrained to  extremely thin 
Ekman layers adjacent to these boundaries, and that the buoyancy force per 
unit volume required to produce small convective motions in the direction of 
rotation is pgap N Q%/vi. Hence the following phenomenon can be anticipated: 
were one to perform an experiment in a rapidly rotating layer, where a solid 
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body is moved slowly in the direction of rotation, it can be conjectured that the 
drag coefficient will greatly increase with the rate of rotation. This is due to the 
fact that at rapid rotation, or small viscosity, the vortex lines become more 
strongly bound to the fluid and stretching them with small motions becomes 
increasing difficult. 

Since rapid rotation causes a marked simplification of the motion in a large 
part of the fluid layer (cf. equation (4.8)), it  is hoped that various related problems 
will receive some impetus from this analysis. For example, a simple extension of 
the above method would also yield the relevant answers very quickly for the 
horizontal rapidly rotating layer with quite an arbitrary initial temperature 
gradient. I n  a subsequent paper, this analysis will be used to motivate the 
asymptotic approach for dealing with the thermal instability problem in a rapidly 
rotating, self-gravitating sphere. 

From physical considerations, two basic limitations are imposed on this 
analysis. The assumption of the validity of the principle of exchange of stabilities 
may not be made for an arbitrary value of Prandtl number; the instability occurs 
as over-stability rather than steady convection when the Prandtl number is 
small. Because of the great similarity of the free and rigid boundary eigen- 
functions throughout most of the layer, it follows, though we shall not show it 
here, that the Prandtl number above which convection appears for rigid 
boundaries differs from the result obtained by Chandrasekhar for free boundaries 
by O( T-3.s). Secondly, in our analysis we have considered the density variations 
in conjunction only with gravitational accelerations. This is the essence of the 
Boussinesq approximation to the Navier-Stokes equations in a non-rotating, 
shallow layer of fluid. If the heated fluid rotates, centrifugal accelerations will 
also be coupled with the density variations, and we have neglected this effect. 
Hence, we must consider our analysis strictly valid when the Prandtl number is 
large (cf. Chandrasekhar 1961) and SlaX,/g is small, where X ,  is the horizontal 
extent of the layer. 

The results presented in this note were obtained in the course of research 
sponsored in part by the Office of Naval Research under contract with Brown 
University. 
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1 1 1 

Y 3  Y1 Yz 
Y1 Y 2  Y 3  

a2+p; aZ+& a2+pf  
- - _ _ _  

Appendix 1 

substituting equations (3 .2)  and (3 .4)  into (2 .5) .  These conditions are 
The expressions for the rigid boundary conditions at 2 = & $ are obtained by 

1 1 1 

Y1 Y 2  Y 3  

1 1 1 

a"/?: a2++B$ a2++Bf 

9 (A 3) = Y  
_ _ ~ -  

3 

i=l 

3 

i- 1 
3 

i= 1 
3 

2 A,  = 0,  

tan (48,) = 0, 

A& tan (*Pt)/(a2 +84) - A ,  tanh ($a) = 0, 

2 Ai/(az++B$)- A,T/Ra = 0,  

where we have used the result (3 .3)  in the last expression of (A 1). 

coefficients A, (i = 0 , 1 , 2 , 3 )  equal to zero 

i=l 

The characteristic equation is formed by setting the determinant of the 

1 1 1 0 

81tan (it%) 82 tan ($82) 8 3  tan ($83) 0 

where 
and 

y = aR tanh ($a)/T 

yt = 8% tan (+fit) (i = 1 , 2 , 3 ) .  

It follows from (3 .3)  that p1 and p2 are complex conjugates, which implies 
that y1 and yz are complex conjugates also. With this observation, we find that 
(A3) can be further reduced by subtracting the first column from the second and 
third columns and expanding both determinants in minors of the fist row. 
This calculation yieIds 

In  the limit T -+ 00 we use the asymptotic relations 

in calculating the roots of (3 .3)  
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The asymptotic expansions of y ,  y l ,  y2 now follow as 

where we have used 
y -+ aP/TQ, y2  -+ Tti  Ji, y3 = y2, (A 9) 

tanh (&a) = 1 + O(exp [ - T i ] ) ,  tanh (&p2) = i + O(exp [ - T i ] ) .  (A 10) 

In  (A 8 )  and (A 9) the square root is chosen which has its real part positive. We 
use the results (A7)-(A 10) in (A6) and retain the highest-order terms in the limit 
T -+ 00 to obtain the characteristic equation in the form 

y1 = J2a2T&. (A 1 1 )  

p 1 -  - Po) 1 + p!*)/Ti% + O( T-Q) (A 12)  

pp = 7r, pp) = - 7r J2/a2. (A 13) 

To obtain the lowest root of (A 1 1 )  we substitute the expansion 

into (A 5 )  and (A 12) .  This gives 

The characteristic equation for the proportionality constant, P = BIT$, is 
obtained from (A 7), (A 12)  and (A 13) as 

a2 = n2 + 01.6 - 2 J27r2a2/( T h )  + O( T-i) .  (A 14) 

The minimum value of P occurs where aP/aa = 0.  The value a, for P, is obtained 
by substituting the expansion 

a, = .Lo) + c$'/T* + O( Pi) (A 15) 

into the derivative of (A 14) and equating like powers of T in the resulting expres- 
sion. It then follows that 

(%7r )Q, aI.",Ip) = - 2  3J 2 9 (A 16) = 1 2 

and the critical value of Rayleigh number, in the limit T -+ 00, is calculated from 

P, = (ak0))4 + n2/(~Lo))2 - 4 J ~ ( C ~ ( ~ ) ) ~ / T A .  (A 17) 

The results of this calculation for T > 106 are summarized in table 1 .  


